Mechanical Characterization of Ultralow Interfacial Tension Oil-in-Water Droplets by Thermal Capillary Wave Analysis in a Microfluidic Device.

نویسندگان

  • Guido Bolognesi
  • Yuki Saito
  • Arwen I I Tyler
  • Andrew D Ward
  • Colin D Bain
  • Oscar Ces
چکیده

Measurements of the ultralow interfacial tension and surfactant film bending rigidity for micron-sized heptane droplets in bis(2-ethylhexyl) sodium sulfosuccinate-NaCl aqueous solutions were performed in a microfluidic device through the analysis of thermally driven droplet interface fluctuations. The Fourier spectrum of the stochastic droplet interface displacement was measured through bright-field video microscopy and a contour analysis technique. The droplet interfacial tension, together with the surfactant film bending rigidity, was obtained by fitting the experimental results to the prediction of a capillary wave model. Compared to existing methods for ultralow interfacial tension measurements, this contactless, nondestructive, all-optical approach has several advantages, such as fast measurement, easy implementation, cost-effectiveness, reduced amount of liquids, and integration into lab-on-a-chip devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical characterization of ultralow interfacial tension oil-in-water droplets by thermal capillary wave analysis in a micro uidic device

Measurements of the ultralow interfacial tension and surfactant film bending rigidity for micron-sized heptane droplets in bis(2-ethylhexyl) sodium sulfosuccinate−NaCl aqueous solutions were performed in a microfluidic device through the analysis of thermally driven droplet interface fluctuations. The Fourier spectrum of the stochastic droplet interface displacement was measured through bright-...

متن کامل

A Microfluidic Platform for the Production of Monodisperse Ultralow Interfacial Tension Oil Droplets in Water

We present a novel microfluidic approach for the generation of monodisperse oil droplets in water with ultra-low interfacial tensions. Using an oil-water-surfactant formulation under conditions close to the microemulsion phase transition, we actively controlled the surface tension at the liquid-liquid interface within the microfluidic device in order to produce monodisperse droplets. These drop...

متن کامل

On the Mechanism of Drop Self-Shaping in Cooled Emulsions.

Two recent studies (Denkov et al., Nature 2015, 528, 392 and Guttman et al. Proc. Natl. Acad. Sci. U.S.A.2016, 113, 493) demonstrated that micrometer-sized n-alkane drops, dispersed in aqueous surfactant solutions, can break their spherical symmetry upon cooling and self-shape into a variety of regular shapes, such as fluid polyhedra, platelet-shaped hexagons, triangles, rhomboids, toroids, and...

متن کامل

Microfluidic Assessment of Frying Oil Degradation

Monitoring the quality of frying oil is important for the health of consumers. This paper reports a microfluidic technique for rapidly quantifying the degradation of frying oil. The microfluidic device generates monodispersed water-in-oil droplets and exploits viscosity and interfacial tension changes of frying oil samples over their frying/degradation process. The measured parameters were corr...

متن کامل

Numerical Study of Droplet Generation Process in a Microfluidic Flow Focusing

Microfluidic flow focusing devices have been utilized for droplet generation on account of its superior control over droplet size. Droplet based microfluidics addressed many scientific issues by providing a novel technological platform for applications such as biology, pharmaceutical industry, biomedical studies and drug delivery. This study numerically investigated the droplet generation proce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 32 15  شماره 

صفحات  -

تاریخ انتشار 2016